

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION

Cyril DIETZ, Guilherme CLAUDINO E SILVA IEPC 2019-A883

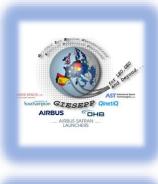
36th International Electric Propulsion/Conference 15.-20. September 2019, Wien Austria

WELCOME TO ARIANE GROUP AT IEPC2019

More Added Value? – An Investigation on the Commercial Benefit of Different EP Technologies for Orbital Propulsion IEPC-2019-883: 16.09. 15:45 - Commercial Propulsion Needs by Cyril Dietz

Ariane Group 5A Neutralizer qualification status

IEPC-2019-896: 18.09. 09:30 – Material Technologies Cathodes by Marcel Berger


The Ariane Group Electric Propulsion Program 2019-2020

IEPC-2019-592: 19.09. 09:15 - Commercial Propulsion Needs by Hans Leiter

A Nouvelle Neutralization Concept for RIT-µX Miniaturized Radio Frequency Ion Thruster Systems

IEPC-2019-806: 19.09. 17:15 - Ion Thrusters by Hans Leiter

OUTLINE

01 INTRODUCTION

02 USE CASES

03 RESULTS

04 CONCLUSION AND WAY FORWARD

01 INTRODUCTION

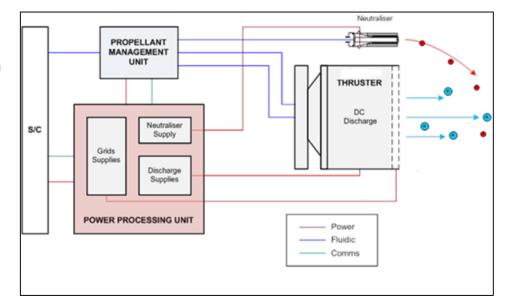
THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP GMBH – ALL RIGHTS RESERVED.

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019

INTRODUCTION

Horizon 2020

EP Development


- GIESEPP Gridded Ion Engine Standardized Electric Propulsion Platforms
- 3 platforms for LEO/MEO, GEO, Space Exploration...

What Impact on the final result has the selection of an EPS for a S/C?

- Extend the pure engineering-centric view
- Consider full S/C life cycle
- Link one end of "the chain" (operators) with the other end (EPS suppliers)
- Establish a fundamental comparison in EPS

02 USE CASES

THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP GMBH – ALL RIGHTS RESERVED.

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019

INTRODUCTION

4 representative Use Cases

- Commercial Telecommunications
- Assumptions and Conventions
- Continuous Iterations

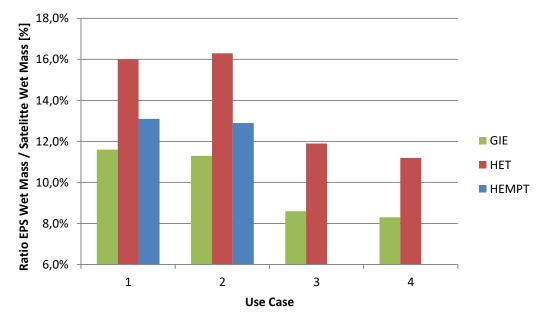
Use Case	Mission Name	Final Orbit	Satellite Dry Mass [kg]	Qty of Thrusters	Payload Capacity	Ejecti on	Total electric	Comments
Cuse		01011	initiase [itig]	1 maotero	Equivalent	Orbit	Power	
							[kW]	
1	Heavy GEO	GEO	4700	4	100 Gbps	GTO	25	Direct injection to be
								considered.
2	Small GEO	GEO	3000	3	50	GTO	10	Direct injection to
					transponders			be considered
3	LEO	LEO	140	1	8 Gbps	LEO	2	Orbit supposed at
	Constellation,							1000 km;
	small sat							no OR; 700 sats /
								constellation
4	LEO	LEO	280	2	20 Gbps	LEO	4	orbit supposed at
	Constellation,							500 km;
	medium sat							no OR; 1200 sats /
								constellation

03 RESULTS

THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP GMBH – ALL RIGHTS RESERVED.

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019

RESULTS **GEO** LEO 120% 120% EPS Wet Mass [% of HET Reference] 110% EPS Wet Mass [% from HET 110% **EPS Wet Mass** 100% 100% reference] 90% 90% GIF GIF 80% 80% HET HET 70% 70% HEMPT 60% 60%


2

Use Case

- 1 \triangleright For GEO reduced down to 65%
- For LEO reduced down to 70% \succ

- For GEO reduced down to 11.6% \geq
- \triangleright For LEO reduced down to 8.3%

3

4

Use Case

50%

50%

MORE ADDED VALUE? - AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019

RESULTS

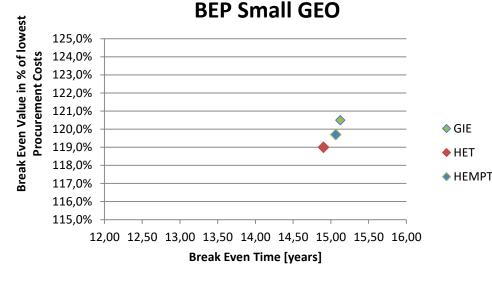
150,0%

8,00

BREAK-EVEN POINT

➢ Widely no impact by EPS

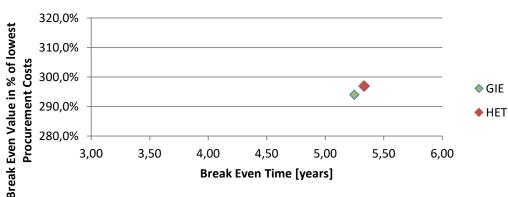
GIE

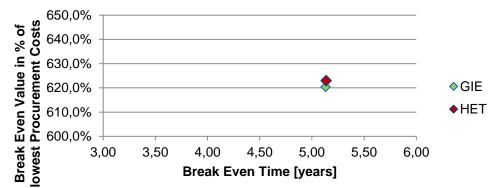

HET

12,00

HEMPT

BEP Heavy GEO

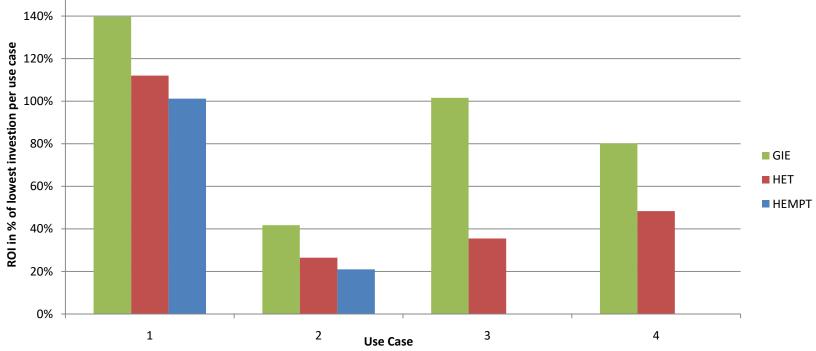

9,00


BEP LEO Constellation, small

10,00

Break Even Time [years]

BEP LEO Constellation, medium


THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT I ARIANEGROUP GMBH – ALL RIGHTS RESERVED.

11,00

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019

RESULTS

Return On Investment

Return On Investment

Maximum life extension on GEO → ROI △ up to (39%) 100%
Maximum launch mass on LEO → ROI △ up to 127% (36%)

04 CONCLUSION AND WAY FORWARD

CONCLUSION

EPS Selection

- Strong Influence on S/C Mass
 - Savings up to 35% of EPS Mass with GIE
 - 5% Satellite Wet Mass savings
- Launch Mass savings increase flexibility:
 - Higher transfer orbit \rightarrow reduce OR time difference to a minimum
 - More Launchers and Launch Configuration on hand...
- No particular impact on Break-Even Point
- Extended Potential
 - Considerable Life-extension with GIE would increas ROI significantly
 - Direct injection as feasable option using GIE

Way Forward

- Extend model with customer input and feedback
- Further use cases and variables
- Assess life extension ot other S/C subsystems

Funded by the Horizon 2020 Framework Programme of the European Union

https://ec.europa.eu/programmes/horizon2020

Thank you!

See your

ArianeGroup electric propulsion team at exhibition

Susana Cortes – Cyril Dietz – Hans Leiter – Marcel Berger

THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT | ARIANEGROUP GMBH – ALL RIGHTS RESERVED.

MORE ADDED VALUE? – AN INVESTIGATION ON THE COMMERCIAL BENEFIT OF DIFFERENT EP TECHNOLOGIES FOR ORBITAL PROPULSION - 16/09/2019 14